Two resting potential levels regulated by the inward-rectifier potassium channel in the guinea-pig spiral modiolar artery.

نویسندگان

  • Z G Jiang
  • J Q Si
  • M R Lasarev
  • A L Nuttall
چکیده

1. Intracellular in vitro recordings were made from 771 cells from the spiral modiolar artery (SMA). The initial resting potentials (RPs) displayed a bimodal distribution that was well modelled as a mixture of two Gaussian distributions. About half of the cells had an average RP of -74 mV, and were termed high-RP cells, whereas the other half had an average RP around -41 mV, and were termed low-RP cells. Preparations that were incubated for longer than 24 h contained significantly more high-RP cells than those incubated for less than 8 h. 2. When labelled with the fluorescent dye propidium iodide, 68 and 36 cells were identified as smooth muscle cells (SMC) and endothelial cells (EC), respectively. The RP and input resistance were not significantly different between these two types of cell. Dye coupling was observed only in ECs. Dual cell recordings with 0.2-1.0 mm separation demonstrated the simultaneous existence of high- and low-RP cells and a heterogeneous low-strength electrical coupling. 3. The high-RP cells were depolarized by ACh and by high extracellular potassium concentration (high K(+)). The low-RP cells were usually hyperpolarized by moderately high K(+) (7.5-20 mM) and by ACh. The high K(+)-induced hyperpolarization was suppressed by barium (Ba(2+), 10-50 microM). The putative gap junction blocker 18 beta-glycyrrhetinic acid suppressed the ACh-induced responses in SMCs, but not in ECs. 4. Low-RP cells could rapidly shift the membrane potential to a permanent high-RP state spontaneously or, more often, after a brief application of hyperpolarizing agents including high K(+), ACh, nitric oxide and pinacidil. Once shifted to a high-RP state, the responses of these cells to high K(+) and ACh became similar to those of the original high-RP cells. 5. High-RP cells occasionally shifted their potentials to a low-RP state either spontaneously or after a brief application of 10-50 microM Ba(2+) or 100 microM ouabain. Once shifted to the low-RP state, the response of these cells to high K(+) and ACh became a hyperpolarization. The shift between high- and low-RP states was largely mimicked by wash-in and wash-out of low concentrations of Ba(2+). The shift often showed a regenerative process as a fast phase in its middle course. 6. It is concluded that the cochlear SMA in vitro is composed of poorly and heterogeneously coupled SMCs and ECs, simultaneously resting in one of two distinct states, one a high-RP state and the other a low-RP state. The two RP states are exchangeable mainly due to all-or-none-like conductance changes of the inward-rectifier K(+) channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverse Kir Expression Contributes to Distinct Bimodal Distribution of Resting Potentials and Vasotone Responses of Arterioles

The resting membrane potential (RP) of vascular smooth muscle cells (VSMCs) is a major determinant of cytosolic calcium concentration and vascular tone. The heterogeneity of RPs and its underlying mechanism among different vascular beds remain poorly understood. We compared the RPs and vasomotion properties between the guinea pig spiral modiolar artery (SMA), brain arterioles (BA) and mesenteri...

متن کامل

Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel

Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...

متن کامل

Regulation of L-type calcium channel and delayed rectifier potassium channel activity by p21-activated kinase-1 in guinea pig sinoatrial node pacemaker cells.

Phosphorylation of ion channels plays an important role in the regulation of cardiac function, but signaling mechanisms controlling dephosphorylation are not well understood. We have tested the hypothesis that p(21)-activated kinase-1 (Pak1), a serine-threonine protein kinase regulated by Ras-related small G proteins, regulates sinoatrial node (SAN) ion channel activity through a mechanism invo...

متن کامل

Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes.

Background outward K+ currents in guinea pig ventricular myocytes were characterized over a broad range of membrane potentials, including those corresponding to the plateau of the action potential. The background current that is blocked by 1 mM Ba2+ (IK,p) activates within 5 msec at positive potentials, does not inactivate, and deactivates very rapidly on repolarization. IK,p is insensitive to ...

متن کامل

2-Aminoethoxydiphenyl borate blocks electrical coupling and inhibits voltage-gated K+ channels in guinea pig arteriole cells.

2-Aminoethoxydiphenyl borate (2-APB) analogs are potentially better vascular gap junction blockers than others widely used, but they remain to be characterized. Using whole cell and intracellular recording techniques, we studied the actions of 2-APB and its potent analog diphenylborinic anhydride (DPBA) on vascular smooth muscle cells (VSMCs) and endothelial cells in situ of or dissociated from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 537 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001